
A Fast MM Algorithm for Group Lasso

Abstract

The group lasso regression is a popular method for performing model selection
on groups of predictors with a natural structure. When each group is orthogonal-
ized, the optimization yields the widely-used block coordinate descent (BCD) algo-
rithm. Despite its simplicity, the BCD algorithm converges slowly when the matrix
of features is poorly conditioned or when the solution is not highly sparse. This
article presents a novel iterative algorithm for the group lasso based on the majorize-
minimize (MM) principle. Unlike previous algorithms, the proposed MM algorithm
optimizes a reparameterized objective for the group lasso that maintains the same
Karush-Kuhn-Tucker (KKT) conditions as the original problem. This change of vari-
ables enables an adaptive MM algorithm that, at each iteration, prioritizes the groups
that are furthest from meeting the KKT conditions. As a result the convergence rate
of the MM algorithm is accelerated with minimal additional cost. We establish the
global convergence of the MM algorithm to the group-lasso KKT point. Using real
data and simulations, we demonstrate numerically that the MM algorithm converges
up to an order of magnitude faster than the BCD algorithm when computed over a
regularization path.

Keywords: lasso penalty, global convergence, group selection, majorization-minimization
(MM)

1

1 Introduction

The objective of group selection methods is to identify which groups of predictors are im-

portant for predicting the outcome variable and to estimate their corresponding regression

coefficients. These methods are particularly useful in scenarios where the predictor vari-

ables naturally form meaningful groups or when prior knowledge indicates that certain

groups of variables might be linked to the outcome variable. For example, in genomics,

genes within the same pathway often exhibit similar functions, and incorporating group

structures, as seen in gene set enrichment analysis (Subramanian et al., 2005), has proven

effective for biomarker identification (Meier et al., 2008).

To formulate this problem, suppose we are given a dataset (y,X) consisting of a response

vector y ∈ Rn and a feature matrix X ∈ Rn×p, with n and p denoting the number of

observations and the number of predictors, respectively. In group selection, we decompose

the feature matrix X into J submatrices as

X = [X1, . . . ,XJ],

where Xj ∈ Rn×pj for all j and p1 + · · · + pJ = p. Suppose that we are interested in

determining which of the J feature submatrices are important in the linear regression

model given by

Y = β01+Xβ = β01+X1β1 + · · ·+XJβJ + ϵ, (1)

where βj ∈ Rpj are the coefficients for group j and ϵ ∼ N (0, σ2In). Henceforth, we assume

without loss of generality that all predictors and the response have been centered to have

zero mean; in this case, the intercept term β0 may be omitted (Tibshirani, 1996).

One method to select entire groups of features is the group lasso technique (Yuan

and Lin, 2006), an extension of the well-known lasso method (Tibshirani, 1996). The

original group lasso algorithm Yuan and Lin (2006) required that each group matrix Xj be

orthogonal. To address more general scenarios, Simon and Tibshirani (2012) introduced

2

the standardized group lasso. Similar to the vanilla lasso, the group lasso proposed in

Simon and Tibshirani (2012) requires that the features be standardized as a preliminary

step. However, it advocates a specific standardization technique called sphering, which

has been shown to offer both theoretical and empirical advantages compared to not using

sphering. Assuming that all Xj’s are full rank, sphering requires that each block Xj of

features is replaced by Zj, where Xj = ZjRj is the QR decomposition of Xj and

Z⊤
j Zj = Ipj , j = 1, . . . , J, (2)

where Ipj ∈ Rpj×pj is the identity matrix. Define θj := Rjβj for all j. We then minimize,

in terms of θ = [θ⊤
1 , . . . ,θ

⊤
J]

⊤, the group lasso objective:

f (θ) :=
1

2n

∥∥∥∥∥y −
J∑

j=1

Zjθj

∥∥∥∥∥
2

2

+ λ
J∑

j=1

√
pj ∥θj∥2. (3)

Denote θ̂j, k = 1, . . . , J to be the minimizer of (3). We can then obtain estimates

for the variables βj in the original model by applying the transformation β̂j = R−1
j θ̂j for

all j. This transformation assumes that each matrix Xj is of full rank and that Rj is an

upper-triangular matrix. For completeness, in the supplementary Section A we describe

how sphering is modified in the rank-deficient case.

The minimizer of (3) achieves group sparsity due to the non-smoothness of ∥ · ∥2 in the

penalty
∑

j

√
pj ∥θj∥2 =

∑
j

√
pj∥Xjβj∥2. The penalty encourages entire groups of mean

responses {Xjβj} to be set to zero, thereby selecting only the most relevant groups for

prediction. In particular, for a given value of λ > 0, either the entire vector θ̂j associated

with a group of predictors will be zero or all its elements will be non-zero. The larger the

value of λ, the more stringent the penalty, leading to more groups being shrunk to zero.

Consequently, a higher λ value promotes greater sparsity.

Unlike in the sphered case, when the sphered matrices Zj are replaced with the original

non-sphered group matricesXj in (3), a closed-form block coordinate update does not exist.

Numerous algorithms have been proposed for this setting, including proximal gradient

3

methods such as the so-called ISTA and FISTA algorithms in Qin et al. (2013), as well as

Newton-type algorithms (Yang and Hastie, 2024). These algorithms employ sub-iterative

methods to solve each block coordinate update.

A simple block coordinate descent algorithm for the sphered group lasso is detailed in

Breheny and Huang (2015), with an accompanying R package, grpreg. While block coordi-

nate descent (BCD) is straightforward, we observe in our simulations that it is numerically

slow when computing the entire regularization path with many activated variables. This

slowdown is particularly noticeable when both the number of activated groups in the solu-

tion and the condition number of the feature matrix X are large.

In this paper, we present a fast majorization-minimization (MM) algorithm (Hunter

and Lange, 2004) for solving the sphered grouped lasso problem. Previous works, such

as Wu and Lange (2008); Yang and Zou (2015); Helwig (2025), provide a group-wise MM

algorithm on the original parameters for the non-sphered problem using a quadratic bound.

Our method, however, minimizes a novel objective with auxiliary variables that satisfy the

group-lasso Karush-Kuhn-Tucker (KKT) conditions. By leveraging the orthogonality of the

Zj matrices, we derive an adaptive majorizing bound, where at each iteration, we optimally

select a weight for each group to provide the best possible majorizing bound. This method

is implemented efficiently using conjugate gradient techniques and methods that store and

work only with activated variables.

In Section 2, we review the block coordinate descent algorithm for group lasso. In

Section 3, we formulate our MM algorithm for minimizing (3) using auxiliary variables.

We also describe how the algorithm is parametrized by weights and how these weights can

be optimally chosen. Additionally, we prove the global convergence of our MM algorithm

in this section. In Section 4, we provide extensive numerical experiments comparing the

MM algorithm with the BCD algorithm. Concluding remarks and potential future research

directions are discussed in Section 5.

4

2 Block Coordinate Descent

In this section, we restate the method from Yuan and Lin (2006); Simon and Tibshirani

(2012); Breheny and Huang (2015) for minimizing (3) using a block coordinate descent

(BCD) algorithm. In BCD, variables are partitioned into non-overlapping blocks, and

at each iteration, we minimize over the variables within a block, while keeping all other

variables fixed. More precisely, we select a group k in each iteration and update the

corresponding group parameters θj using

θj ← argmin
θj

f (θ1,θ2, . . . ,θj−1,θj,θj+1, . . . ,θJ) , j = 1, . . . , J. (4)

Conventionally, the J blocks are updated in the fixed order θ1 → θ2 → · · · → θJ .

The function f(θ) is a sum of a smooth sum-of-squares error term and a penalty that

is separable with respect to the block variables θ1, . . . ,θJ , that is, it can be written as∑
j ρj(θj) for some functions {ρj}. For functions composed in this way, the updating rule

(4) produces a sequence {θ(t)}t≥0 that converges to the global minimizer; see Tseng (2001)

for further details.

To derive an exact formula for (4), we need to solve the first-order necessary condition.

To see this, we define the partial residual that omits the k-th group as follows:

r¬k := y −
∑
j ̸=k

Zjθj.

Further, if we define αj := nλ
√
pj for all j = 1, . . . , J , then the first-order necessary

condition for the group minimization (4) can be expressed as

Z⊤
j (r¬j − Zjθj) = αjg(θj), j = 1, . . . , J, (5)

where

g(η) =

η

∥η∥2 , η ̸= 0

∈ {s : ∥s∥2 ≤ 1}, η = 0

,

5

is the subgradient of the function ∥η∥2. Using Z⊤
j Zj = Ipj , the solution to (5) for a single

coordinate j is

θj ← Sαj
(Z⊤

j r¬j), (6)

where [a]+ := max(0, a) and

Sλ(x) := x[1− λ/∥x∥2]+ (7)

is the lasso shrinkage operator with Sλ(0) = 0.

If r := y−
∑

j Zjθj represents the ordinary residual, then the block coordinate descent

(BCD) algorithm described in Breheny and Huang (2015) simplifies the update in (6) to,

θj ← Sαj
(Z⊤

j r + θj).

This provides a straightforward method to compute the update in (4). For completeness,

we restate the BCD algorithm from Breheny and Huang (2015) as Algorithm B.1 in the

supplementary Section B.

Overall, one block coordinate cycle requires O(np) operations. While the cost of O(np)

per cycle is not prohibitive, the overall runtime of the BCD algorithm depends on the

number t of cycle iterations needed to achieve convergence. Define Z := [Z1, . . . ,ZJ] as

the concatenation of the sphered group matrices. The magnitude of t is influenced by

the training set {y,Z}, the values of the penalty parameter λ, and the error tolerance.

Empirically, we observe that if λ is small and the condition number of the matrix Z of

all features is large, then the number of iterations t necessary for convergence can be

prohibitively large. In the next section, we present an MM algorithm that is more efficient in

terms of the number of iterations needed to achieve fast convergence under these conditions.

3 Auxiliary MM Algorithm

We now introduce an alternative and more efficient algorithm for minimizing (3) based on

the MM principle. Denote R+ as the set of non-negative real numbers. The proposed MM

6

algorithm operates over auxiliary variables γ = [γ1, . .., γJ]
⊤ ∈ RJ

+, instead of the original

variables θ = [θ⊤
1 , . . . ,θ

⊤
J]

⊤.

In this section, we establish a direct relationship between γ and θ and formulate a

new objective function g(γ) solely in terms of γ. We thus reparameterize the optimization

from a space in Rp to a space in RJ . We demonstrate that the first-order conditions for

minimizing g(γ) are equivalent to the Karush-Kuhn-Tucker (KKT) conditions (5). We

then derive an efficient MM algorithm to minimize the new auxiliary objective in γ-space,

ultimately obtaining the minimizer for (3). Finally, we establish the global convergence of

the proposed MM algorithm.

Before defining the auxiliary variables γ, it is useful to restate the Karush-Kuhn-Tucker

(KKT) conditions (5) that the minimizer θ̂ satisfies in a different form. Define the set of

so-called activated groups as

A := {j : θ̂j ̸= 0},

which represents the set of non-zero groups in θ̂. Recall that Z = [Z1, . . . ,ZJ] is the

concatenation of the sphered group matrices. Then, equation (5) can be written as:

Z⊤
j (y − Zθ̂) =

θ̂j

∥θ̂j∥2
αj, ∀j ∈ A,∥∥∥Z⊤

j (y − Zθ̂)
∥∥∥
2
≤ αj, ∀j /∈ A.

(8)

3.1 Auxiliary Variable Group Lasso

Consider the auxiliary variables γ = [γ1, . . . , γJ]
⊤ ∈ RJ

+. Define

Γ := blcdiag(
√
γ1 Ip1 , . . . ,

√
γJ IpJ), (9)

where the operator blkdiag(A1, . . . ,AJ) refers to the block diagonal matrix formed by

placing the matrices A1,A2, . . . ,AJ along the diagonal and filling the off-diagonal blocks

with zeros. Further, define

G(γ) :=
(
I+ ZΓ2Z⊤)−1

=

(
I+

J∑
j=1

γjZjZ
⊤
j

)−1

.

7

When we use γ̂ in (9), instead of γ, then we add a hat symbol to the matrix Γ. Recall

that αj = nλ
√
pj. With these definitions, we consider the following theorem, whose proof

is provided in supplementary Section D.

Theorem 3.1 (Auxiliary Variable KKT Conditions). Let θ = Γ2Z⊤G(γ)y, where each

block within θ = [θ⊤
1 , . . . ,θ

⊤
J]

⊤ is θj = γjZ
⊤
j G(γ)y for j = 1, . . . , J . Then, θ satisfies the

group-lasso KKT conditions (8) if and only if γ satisfies

∥Z⊤
j G(γ)y∥2 = αj, ∀j ∈ A,∥∥Z⊤
j G(γ)y

∥∥
2
≤ αj, ∀j /∈ A.

(10)

Moreover, γj = ∥θj∥
/
αj for j ∈ A and γj∥Z⊤

j G(γ)y∥2 = 0 for j /∈ A.

An advantage of the alternative set of equations (10) is that they correspond to the KKT

conditions of a new objective function expressed solely in terms of the auxiliary variables

γ. Define α := [α1, . . . , αJ]
⊤ and consider the function:

g(γ) := y⊤G(γ)y + (α⊙α)⊤γ, (11)

where ⊙ denotes the Hadamard product (element-wise product) of two vectors. The fol-

lowing lemma asserts that the minimizer of (11) satisfies the conditions (10).

Lemma 3.1 (Auxiliary Problem). Let γ̂ be the global minimizer of the convex constrained

optimization problem:

γ̂ ∈ argmin
γ∈RJ

+

g(γ). (12)

The solution γ̂ satisfies the auxiliary KKT conditions given by

∥∥Z⊤
j G(γ̂)y

∥∥
2
= αj ∀ γ̂j > 0, (13)∥∥Z⊤

j G(γ̂)y
∥∥
2
≤ αj ∀ γ̂j = 0. (14)

and therefore satisfies (10) in Theorem 3.1.

8

Corollary 3.1. The vector θ̂ = Γ̂2Z⊤G(γ̂)y is a minimizer of the original group lasso

problem (3). Furthermore, the activated set A(θ̂) ≡ {j : γ̂j > 0}.

Once γ̂ is obtained, we can interpret Ac := {j : j /∈ A} = {j : γ̂j = 0} as the set

of groups that are unactivated and, conversely, A = {j : γ̂j > 0} as the set of activated

groups. The activated group coefficients for j ∈ A can be recovered using the formula

θ̂j = γ̂jZ
⊤
j G(γ̂)y and the group coefficients that are unactivated are set to θ̂j = 0.

At first glance, solving the problem (12) may seem more computationally challenging

than minimizing the original group lasso objective (3). For example, one approach to

solving (12) would be to implement a coordinate descent algorithm over the variables γ. If

we define G−1 (γ) := I+
∑

j γjZjZ
⊤
j and γ¬j as the vector that omits the j-th element of

γ. Then, each coordinate update is

γj ← argmin
x∈R+

y⊤ (G−1 (γ¬k) + xZjZ
⊤
j

)−1
y + α2

jx.

This approach requires an iterative algorithm, such as Newton’s or the Secant method,

to generate a sequence {x(l)}l≥ 0 that converges to the correct coordinate update. At each

step l of the iterative algorithm, we need to solve the linear system

(
G−1(γ¬j) + x(l)ZjZ

⊤
j

)−1
y.

In the group lasso context, however, this coordinate descent approach to solve (12) was

not competitive against the BCD algorithm (see supplementary Algorithm B.1) due to the

time it takes to run Newton’s method.

Instead of using coordinate descent, we leverage the orthogonality of the matrices Zj to

derive an MM algorithm that updates all the variables γ(t) = [γ
(t)
1 , . . . , γ

(t)
J]⊤ concurrently

using a closed-form updating formula. In a single MM update, we solve the linear system

G(γ(t))y only once to update all the variables γ1, . . . , γJ .

9

3.2 Constructing an MM Algorithm

The MM algorithm (Hunter and Lange, 2004) is an iterative method for minimization that

can be used on the objective function g(γ) given in (11). It does this by successively

majorizing g(γ) with a surrogate function h(γ, γ̃), where γ̃ ∈ RJ
+ are latent variables. The

conditions that define the majorization are

g(γ̃) = h(γ̃, γ̃),

g(γ) ≤ h(γ, γ̃), γ ∈ RJ
+.

(15)

In other words, the function h(γ, γ̃) lies above g(γ) and is tangent to it at γ = γ̃. Suppose

at iteration t of the MM algorithm, we set γ̃ ← γ(t), that is, we set the latent variables as

the current iterate. To obtain the next iterate, we minimize the surrogate h(γ,γ(t)) in γ.

Thus, the MM map, M(·) := argminγ∈RJ
+
h(γ, ·) allows us to write the update as

γ(t+1) ←M(γ(t)). (16)

The latter update ensures the descent property g(γ(t+1)) = g(M(γ(t))) ≤ g(γ(t)), because

g(γ(t+1)) ≤ h(γ(t+1),γ(t)) ≤ h(γ(t),γ(t)) = g(γ(t)),

where the first inequality and the last equality follow from conditions (15) and the second

inequality follows from (16). We now construct a surrogate function h(γ, γ̃) for g(γ) that

can be easily minimized. To achieve this, we first obtain an upper bound for the term

y⊤G(γ)y.

Let w = [w1, . . . , wJ]
⊤ be a probability vector (i.e.,

∑J
j=1wj = 1 and wj ≥ 0 for all j).

Then,

G−1(γ) = I+
J∑

j=1

γjZjZ
⊤
j =

J∑
j=1

(γj + wj)ZjZ
⊤
j +

J∑
j=1

wj(I− ZjZ
⊤
j).

Consider the following matrix inequality (Zhou et al., 2019)1:(
2J∑
j=1

σjVj

)−1

⪯

(
2J∑
j=1

σ̃jVj

)−1(2J∑
j=1

σ̃2
j

σj
Vj

)(
2J∑
j=1

σ̃jVj

)−1

, (17)

1Here A ⪰ 0⇒ A is positive semi-definite.

10

where Vj ∈ Rn×n are symmetric positive semi-definite matrices for all j, σ ∈ R2J
++ and σ̃ ∈

R2J
+ \{0}. Equality is achieved when σ̃j = σj for j = 1, . . . , 2J . The matrix inequality (17) is

a generalization of Sedrakyan’s inequality (a special case of the Cauchy-Schwarz inequality)

for the real numbers σ̃1, . . . , σ̃2J and positive real numbers σ1, . . . , σ2J :(∑2J
j=1 σ̃j

)2
∑2J

j=1 σj
≤

2J∑
j=1

σ̃2
j

σj
.

We apply inequality (17) to obtain an upper bound for G(γ). Since Z⊤
j Zj = Ipj implies

that I− ZjZ
⊤
j is a projection matrix and positive semi-definite, we apply (17) with

σj = γj + wj, σ̃j = γ̃j + wj, Vj = ZjZ
⊤
j , j = 1, . . . , J,

and

σJ+j = wj, σ̃J+j = wj, VJ+j = I− ZjZ
⊤
j , j = 1, . . . , J.

Hence, we obtain the matrix inequality:

G(γ) ⪯
∑
j

(γ̃j + wj)
2

γj + wj

G(γ̃)ZjZ
⊤
j G(γ̃) +

∑
j

wjG(γ̃)(I− ZjZ
⊤
j)G(γ̃). (18)

We can obtain a bound for y⊤G(γ)y by multiplying this inequality on the left by y⊤ and

on the right by y. Adding the linear term (α⊙α)⊤γ to the bound for y⊤G(γ)y, we obtain

the surrogate function

hw(γ, γ̃) =
∑
j

[
(γ̃j + wj)

2∥Z⊤
j G(γ̃)y∥2

γj + wj

+ wj

(
∥G(γ̃)y∥2 − ∥Z⊤

j G(γ̃)y∥2
)
+ α2

jγj

]
,

parametrized by weights w. Equality with g(γ) is achieved when γ̃ = γ and g(γ) ≤

hw(γ, γ̃) thereby satisfying conditions (15). The key advantage is that the surrogate

hw(γ, γ̃) is simpler to minimize than g(γ) as it separates the variables γ1, . . . , γJ . Mini-

mizing hw(γ,γ
(t)) with respect to γj ∈ [0,∞) yields the simple update

γ
(t+1)
j ←

(wj + γ
(t)
j)
∥∥Z⊤

j G(γ(t))y
∥∥

αj

[
1− wjαj

(wj + γ
(t)
j)
∥∥Z⊤

j G(γ(t))y
∥∥
]
+

. (19)

11

Using Sλ(x), which is the lasso shrinkage operator (7), we simplify the update for γ1, . . . , γj

as

γ
(t+1)
j ← Sαjwj

(
(wj + γ

(t)
j)τ

(t)
j

)/
αj, j = 1, . . . , J,

where τ
(t)
j :=

∥∥Z⊤
j G(γ(t))y

∥∥. The MM steps guarantee a non-increasing sequence {g(γ(t))}t≥0

as long as valid weights parametrize the surrogate function hw. At each MM step, we se-

lect weights that yield the “best” majorizing function. The optimal weight allocation is

described in more detail in Section 3.3.

We present a summary of the MM algorithm for minimizing f(θ) in Algorithm C.1,

included in the supplementary Section C. In this algorithm, we initialize the activated set

to be the empty set, A(0) = ∅, and keep track of A(t) and ZA(t) as we add activated groups.

This approach allows us to efficiently compute the vector G(γ(t))y at each iteration t. We

compute G(γ(t))y via the conjugate gradient (CG) method (Golub and Van Loan, 2013),

an iterative algorithm that only requires matrix-vector multiplications with G−1(γ(t)). At

iteration t, we initialize the CG with the initial guess G(γ(t−1))y and express the matrix

G−1(γ(t)) as

G−1(γ(t)) = I+
∑

j∈A(t)

γ
(t)
j ZjZ

⊤
j = I+ ZA(t)Γ

(t)

A(t)Z
⊤
A(t) .

To approximate G(γ(t))y, we take c < n steps of the CG method with the matrix-vector

multiplication operator x 7→ x+ZA(t)

(
γA(t) ⊙ (Z⊤

A(t)x)
)
, at a cost of O(c×n×

∑
j∈A(t) pj).

We find that the optimal value of c lies within a “Goldilocks” range. If c is too small,

there is an excessive error in approximating G(γ(t))y, leading to a large number t of

iterations required to converge, as each MM step is not optimal. On the other hand, if

c is too large, too much time is spent approximating G(γ(t))y to an unnecessarily high

precision, increasing the cost per iteration. In our experiments, c is set to a relatively small

number (less than 10).

In the worst case, one iteration of the MM algorithm requires O(cnp) operations, how-

ever, when γ(t) is sparse and |A(t)| is small, the cost per iteration is significantly reduced. If

12

|A(t)| is small enough, the most expensive operation in the MM iteration becomes comput-

ing the vector τ (t) =
[∥∥Z⊤

1 G(γ(t))y
∥∥ , . . . ,∥∥Z⊤

JG(γ(t))y
∥∥] which requires O(np) operations.

3.3 Optimal Weights

Recall that we only need to ensure wj ≥ 0 for all j and
∑

j wj = 1 to guarantee a valid

majorization and thus a non-increasing sequence of objective evaluations. When wj = 0,

the MM update (19) simplifies to

γ
(t+1)
j ← γ

(t)
j

∥∥Z⊤
j G(γ(t))y

∥∥
αj

. (20)

This multiplicative update implies that we can only switch an activated group to unacti-

vated and vice versa when wj > 0. In other words, the lasso shrinkage operator (7) appears

only when wj > 0. It might seem appropriate to set w ∝ 1 and assign a strictly positive

weight to each group. However, assigning positive weight to only a few carefully selected

groups is more effective. We now describe how to allocate these positive weights.

The rate of convergence of the MM algorithm depends on how well the surrogate func-

tion hw(γ, γ̃) approximates the function g(γ) (Lange, 2016). In fact, the objective evalu-

ated at γ(t+1) is bounded from above as

g(γ(t+1)) ≤ hw
(
M(γ(t)),γ(t)

)
.

At each iteration of the MM algorithm, we select the least upper bound hw
(
M(γ(t)),γ(t)

)
to “drive down” the value of g(γ(t+1)) as much as possible. This equates to solving

w(t+1) = argmin
w∈RJ

+,1⊤w=1

hw
(
M(γ(t)),γ(t)

)
= argmin

w∈RJ
+,1⊤w=1

min
γ∈RJ

+

hw(γ,γ
(t)). (21)

This problem is a constrained convex optimization that can be solved exactly in the

fast O(J ln J) time. In supplementary Section G, we derive the solution and describe its

computation in the function getWeights which is implemented in Algorithm G.1. In short,

the function getWeights strategically assigns positive weights to the groups for which the

13

values of ξj := (αj − τ
(t)
j)2 = (αj −

∥∥Z⊤
j G(γ(t))y

∥∥)2 are the largest. We interpret these

assignments via the auxiliary KKT conditions (13) and (14).

If ξj is large and group j is activated (γ
(t)
j > 0), then, either condition (13) or (14) is

far from being met. In this case, by assigning wj > 0, we prioritize group j in the MM

update, pushing it closer to satisfying one of the KKT conditions. If ξj is large, group j is

unactivated (γ
(t)
j = 0), and (αj −

∥∥Z⊤
j G(γ(t))y

∥∥) < 0, then group j should belong to the

activated set. In this case, getWeights assigns a positive weight wj > 0, effectively moving

j into the activated set (γ
(t+1)
j > 0). Conversely, if γ

(t)
j = 0 and (αj −

∥∥Z⊤
j G(γ(t))y

∥∥) ≥ 0,

then (14) is met, and getWeights assigns wj = 0, meaning group j remains unactivated

(γ
(t+1)
j = 0). In summary, getWeights selectively assigns the weights {wj} at each iteration

to focus on the groups that are furthest from satisfying the KKT conditions.

Recall that in a single MM iteration, only a mass of 1 can be assigned to the weights {wj}.

In practice, only a few groups are prioritized with positive weight. For the rest of the groups

for which wj = 0, the multiplicative update (20) is used. In other words, if γ
(t)
j = 0 and

wj = 0, then γ
(t+1)
j remains zero.

Assigning weights {wj} provides functionality similar to the greedy coordinate descent

method for lasso (Wu and Lange, 2008), where the variables selected for updating are those

with the steepest negative directional derivative. Our approach updates all variables in a

single MM iteration but emphasizes the groups that are furthest from satisfying the KKT

conditions. This accelerates the MM algorithm’s convergence rate with minimal additional

cost, as the function getWeights only requires O(J ln J) time, because the most resource-

intensive step in getWeights is sorting the array [ξ1, . . . , ξJ].

3.4 Convergence and Uniqueness

We now establish the global convergence of the MM algorithm, with the main convergence

result given in Theorem 3.2. Before presenting the theorem, we must first address the issue

14

of uniqueness. Although the objective g(γ) is convex for γ ∈ RJ
+, it is not necessarily

strictly convex. As a result, the optimal solution set {γ̂ ∈ RJ
+ : γ̂ ∈ argminγ∈RJ

+
g(γ)} may

either contain infinitely many points or consist of a single point. As stated in Theorem 3.2,

we can only guarantee the global convergence of the MM algorithm when γ̂ is unique.

The original group lasso problem (3) yields a unique solution if the columns of Z are

linearly independent, as shown by Mishkin and Pilanci (2022). A weaker condition, which

can hold when p > n, referred to as group general position is also introduced in Mishkin

and Pilanci (2022) and shown to be sufficient for uniqueness. We now state this assumption

and demonstrate that it is also sufficient for the auxiliary problem (12) to yield a unique

solution γ̂.

Assumption 3.1 (Group General Position, Mishkin and Pilanci (2022)). For every A ⊆

{1, . . . , J}, |A| ≤ n+ 1, there do not exist unit vectors vi ∈ Rpi such that for every j ∈ A,

p
−1/2
j Zjvj ∈ affine

(
{p−1/2

i Zivi : i ∈ A \ j}
)
,

where affine({x1,x2, . . . ,xk}) =
{∑k

i=1 sixi :
∑k

i=1 si = 1, si ∈ R
}
.

This assumption is referred to as group general position because it naturally extends the

concept of general position (Tibshirani, 2013) to groups of column vectors. Although this

condition may appear specific, the group general position assumption is naturally satisfied

when the entries of X are drawn from a continuous probability distribution and pj < n for

j = 1, . . . , J . Assumption 3.1 is sufficient to ensure the uniqueness of (12), with a detailed

proof provided in supplementary Section E.

Lemma 3.2 (Uniqueness of Auxiliary Objective). Suppose Assumption 3.1 holds. Then,

the solution γ̂ to (12) is unique.

To prove convergence, we assume that the update G(γ̃)y ← G(γ(t))y is computed

exactly at each iteration t, ignoring any numerical error from the CG approximation. Define

the MM map with the optimal choice of weights as

15

M̂(γ̃) := argmin
γ∈RJ

+

hŵ(γ, γ̃)

where ŵ := argminw∈RJ
+,1⊤w=1 minγ∈RJ

+
hw(γ, γ̃). Our main convergence result, whose

proof is given in supplementary Section F, is the following.

Theorem 3.2 (MM Convergence). Let {γ(t)}t≥0 be the sequence generated by M̂ . If the

solution γ̂ to problem (12) is unique, then the MM sequence {γ(t)}t≥0 converges to γ̂.

4 Numerical Experiments

In this section, we assess the efficiency of the MM algorithm (supplementary Algorithm C.1)

and compare it against the current best alternative for the sphered group lasso, that is, the

BCD algorithm (supplementary Algorithm B.1). All numerical experiments were conducted

using Julia (version 1.10.4) on a Google Cloud Platform c2-standard-16 instance, which

features 16 vCPUs and 64 GB of memory. In supplementary Section H, we briefly describe

how to obtain θ̂ on the grid λ1, . . . , λm of λ values.

We conduct our experiments in the following settings. In Section 4.1, we simulate data

for the matrices Xj and the response y based on model (1). In Section 4.2, X and y are

derived from a real dataset with anonymized data on foot traffic and sales volumes for a

major Chinese supermarket (Wang, 2009; Thompson and Vahid, 2024). In supplementary

Section I, we provide additional numerical studies. These include simulations with pseudo-

real data, where Xj is constructed from a real dataset while y is simulated. We also

investigate the empirical convergence behavior near the optimal solution and simulate X

with groups of size one to mimic the lasso problem.

The metrics that we use in our experiments emphasize the computational cost of running

the group lasso algorithm rather than the statistical accuracy of the solution. We run the

MM algorithm and compare its runtime and number of iterations t until convergence with

16

the BCD algorithm. Unless specified otherwise, we set the error tolerance parameter for

both algorithms to ϵ = 10−5. This means we terminate once maxj p
−1
j ∥θ

(t)
j −θ

(t−1)
j ∥2 < 10−5.

The number of conjugate gradient iterations in the MM algorithm is set to c = 4 for all

experiments. While R packages such as grpreg implement the BCD algorithm, we chose

to implement both algorithms in the programming language Julia. This choice ensures a

proper comparison of running times and consistency in setting algorithm parameters. The

Julia source code for our implementation and experiments is available in the supplemen-

tary Section.

4.1 Simulations

4.1.1 Synthetic Data Generation

To compare the computational performance of the MM algorithm and BCD algorithm, we

use datasets simulated from the group linear model (1). Each group size is set to a fixed

constant, p1 = p2 = · · · = pJ = d. Each row of the feature matrix X = [X1, . . . ,XJ] is

generated from a multivariate normal distribution with zero mean and covariance matrix

Σ. The covariance matrix is constructed to have between-group positive correlation ψ ∈

(0, 1) and within-group positive correlation ρ ∈ (0, 1) as in Simon and Tibshirani (2012).

Specifically,

Σi,j =

1, if i = j,

ρ, if ⌈i/d⌉ = ⌈j/d⌉,

ψ, otherwise.

The noise variance, σ2, is chosen to achieve a signal-to-noise ratio (SNR) of 1, where

SNR := Var(Xβ)/σ2.

The coefficient vector β contains k non-zero groups uniformly distributed among the J

groups. We consider group sizes of d = 3 and d = 5 in the simulations. The following two

settings are used for the values of the non-zero groups:

17

� Setting 1: For all activated groups j, βj = [−1, 0, 1]⊤ when d = 3, and βj =

[−2,−1, 0, 1, 2]⊤ when d = 5.

� Setting 2: For all activated groups j, the elements of the vector βj ∈ Rd are drawn

from a standard normal distribution.

We generate y using (1) and sphere the matrices X1, . . . ,XJ to obtain Z1, . . . ,ZJ .

4.1.2 Computational Performance of Regularization Paths

We now present results where θ̂ is computed over a grid λ1 < . . . < λm, as described in

supplementary Section H. We set λ1 = ωλm, where ω = 10−1. We run the MM algorithm

and the BCD algorithm on datasets simulated under Setting 1 and Setting 2 with group

sizes d = 3 and d = 5, with varying correlation values. In these simulations, the number

of observations is n = 1, 000 and the total number of predictors is p = Jd = 1, 500. The

number of activated groups is equal to k = J/10. Mean runtimes over 50 simulations are

reported in Table 1. A table of mean itearations is provided in supplementary Section I.1.

The results indicate that our MM algorithm significantly outperforms the BCD algo-

rithm, achieving up to a 50-fold reduction in runtime under Setting 2 with a smaller group

size of d = 3. The most pronounced improvement is observed when the correlation among

the predictors is moderate (ρ = 0.6, ψ = 0.6).

To better understand this behavior, consider the condition number of a positive definite

matrix A, denoted as κ(A), which is the ratio of the largest eigenvalue to the smallest

eigenvalue of A. Under our simulation settings, where ρ = ψ, the covariance matrix can

be written as

Σ = (1− ρ)I+ ρ11⊤,

and we can show that the condition number of the expected matrix X⊤ X is

κ
(
E[X⊤X]

)
= κ (Σ) =

1 + (n− 1)ρ

1− ρ
. (22)

18

This condition number increases as ρ → 1, indicating that higher correlation among pre-

dictors results in a more ill-conditioned matrix. Our numerical results suggest that the

condition number of the matrix X⊤X plays a critical role in the performance of the algo-

rithm.

Table 1: Running Time (s) for Setting 1 and Setting 2. Means of 50 replications are

reported.

Correlation (ψ, ρ)

Setting Group Size Method (0.3, 0.3) (0.6, 0.6) (0.9, 0.9)

1 3 BCD 8.39× 102 1.59× 103 7.62× 102

MM 3.91× 101 3.47× 101 2.98× 101

5 BCD 9.96× 102 1.07× 103 4.95× 102

MM 5.54× 101 5.09× 101 4.68× 101

2 3 BCD 1.45× 103 2.37× 103 1.32× 103

MM 6.00× 101 4.73× 101 3.71× 101

5 BCD 8.01× 102 9.12× 102 5.59× 102

MM 4.41× 101 3.92× 101 3.70× 101

The dominant factor influencing the number of iterations t and runtime for both the

MM algorithm and BCD algorithm is the number of non-zero groups at each value of λi,

i = 1, . . . ,m. When fitting a regularization path, a disproportionate amount of time is

spent at the least sparse end of the path, where λ is small. The MM algorithm increasingly

outperforms the BCD algorithm in this region of the path, as the value of λ decreases. In

Figure 1, we present the cumulative runtime and cumulative iterations as both algorithms

progress from λm to λ1 using warm starts. These values represent the total runtime and

19

iterations required to compute the lasso path up to a certain index. In these simulations,

we maintain the settings used for Table 1 but only consider Setting 2, with group size

d = 3 and correlation ρ = 0.3, ψ = 0.3. For ease of readability, the indexes 1, . . . ,m are

reversed in the figures. This means the first λ index corresponds to the largest λ value and

the starting value for both algorithms. In Figure 1, we indicate the average λ index that

minimizes the prediction error ∥Xβ̂(λ)−Xβ∥, representing the optimal λ.

In certain applications, computing the entire regularization path is necessary. For exam-

ple, a common approach to control the False Discovery Rate (FDR) during group selection

is to compute knockoff groups (Dai and Barber, 2016). This procedure requires obtaining

the scores Vj := sup{λ : θ̂j(λ) ̸= 0}, for j = 1, . . . , J . These scores indicate the first time

each group Zj enters the group lasso regularization path. In such scenarios, where com-

puting the entire regularization path is essential, simulations show that the MM algorithm

significantly outperforms the BCD algorithm.

(a) Cumulative Time(s) (b) Cumulative Iterations

Figure 1: Cumulative runtime and iterations t until convergence for the BCD and MM

algorithms, as λ decreases in a regularization path. The mean values from 50 simulations are

reported, with the vertical dotted black line indicating the mean index at which prediction

error is minimized.

20

4.2 Real Data

(a) Cumulative Time(s) (b) Cumulative Iterations

Figure 2: Cumulative runtime and number of iterations t until convergence for the BCD

and MM algorithms, as λ decreases along the regularization path for the supermarket foot

traffic dataset.

We now consider a real dataset containing anonymized information on foot traffic and

sales volumes for a major Chinese supermarket (Wang, 2009; Thompson and Vahid, 2024).

The task is to model foot traffic using the sales volumes of different products. We fit

a sparse model using group lasso to identify a subset of products that effectively predict

foot traffic. Sales volumes are available for 6,398 products. In this dataset, two groups are

created for each product: a linear group containing the linear term and a nonlinear group

containing a four-term cubic polynomial. This results in p = 31, 990 total predictors and

J = 12, 796 groups (6,398 single predictor groups (d = 1) plus 6,398 groups with d = 4).

The sample consists of n = 464 days. We randomly hold out 10% of the data as a

testing set to validate the model. The MM algorithm and the BCD algorithm are run on

the remaining 90% of the dataset for a grid of λ values, where λ1 = ωλm with ω = 0.1.

For further details on the construction of this grid, refer to supplementary Section H. In

Figure 2, we show the cumulative runtime and cumulative number of iterations as both

algorithms progress from λm to λ1. In the figure, the vertical dashed line indicates the

21

λ index that minimizes the test error ∥ytest −Xtestβ̂(λ)∥. The results in Figure 2 show a

marginal difference in the number of iterations required to compute the entire regularization

path, while exhibiting a significant improvement in the cumulative runtime of the MM

algorithm compared to the BCD algorithm. This indicates that the MM algorithm has a

cost-per-iteration advantage over the BCD algorithm for this particular dataset, despite no

significant differences in the number of iterations.

5 Conclusions

In this paper, we investigated an efficient method for obtaining the group lasso solu-

tion, which involves minimizing a convex objective defined over block parameters θ =

[θ⊤
1 , . . . ,θ

⊤
J]

⊤ ∈ Rp. While the popular block coordinate descent (BCD) algorithm offers a

straightforward updating rule under the assumption of orthogonalized groups, it can suffer

from slow convergence, particularly when the regularization parameter λ is small or when

the data matrix X has a high condition number.

We proposed an alternative algorithm based on the majorization-minimization (MM)

principle to address these limitations. This approach minimizes an objective defined over

(low-dimensional) auxiliary variables γ = [γ1, . . . , γJ]
⊤ ∈ RJ

+, rather than the (high-

dimensional) original block coefficients. We established a clear relationship between the

auxiliary variables γ and the original variables θ. Through extensive numerical studies,

we demonstrated that the MM algorithm consistently converges faster than the BCD algo-

rithm, both on simulated datasets and a real-world dataset.

Although the experiments in Section 4 show that the MM algorithm offers significant

advantages over the BCD algorithm, the MM algorithm may less suitable if many groups

become active early in the solution path, because the conjugate gradient runtime depends

on the number of active features
∑

j∈A pj.

SUPPLEMENTARY MATERIAL

22

mmgl jcgs suppl.pdf: A PDF file containing notations, proofs of theoretical results, ad-

ditional numerical studies, and pseudocode. (.pdf file)

code: Repository containing Julia code for implementing the MM and CD algorithms

described in the article. The repository also includes the datasets used as examples

in the article and the code to generate simulation results. (GNU zipped tar file)

References

Breheny, P. and Huang, J. (2015). Group descent algorithms for nonconvex penalized

linear and logistic regression models with grouped predictors. Statistics and Computing,

25:173–187.

Dai, R. and Barber, R. (2016). The knockoff filter for fdr control in group-sparse and

multitask regression. In International Conference on Machine Learning, pages 1851–

1859. PMLR.

Golub, G. H. and Van Loan, C. F. (2013). Matrix computations. JHU press.

Helwig, N. E. (2025). Versatile descent algorithms for group regularization and variable

selection in generalized linear models. Journal of Computational and Graphical Statistics,

34(1):239–252.

Hunter, D. R. and Lange, K. (2004). A tutorial on mm algorithms. The American Statis-

tician, 58(1):30–37.

Lange, K. (2016). MM optimization algorithms. SIAM.

Meier, L., Van De Geer, S., and Bühlmann, P. (2008). The group lasso for logistic regression.

Journal of the Royal Statistical Society Series B: Statistical Methodology, 70(1):53–71.

23

Mishkin, A. and Pilanci, M. (2022). The solution path of the group lasso. In OPT 2022:

Optimization for Machine Learning (NeurIPS 2022 Workshop).

Qin, Z., Scheinberg, K., and Goldfarb, D. (2013). Efficient block-coordinate descent algo-

rithms for the group lasso. Mathematical Programming Computation, 5(2):143–169.

Simon, N. and Tibshirani, R. (2012). Standardization and the group lasso penalty. Statistica

Sinica, 22(3):983.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A.,

Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., et al. (2005). Gene set en-

richment analysis: a knowledge-based approach for interpreting genome-wide expression

profiles. Proceedings of the National Academy of Sciences, 102(43):15545–15550.

Thompson, R. and Vahid, F. (2024). Group selection and shrinkage: Structured sparsity

for semiparametric additive models. Journal of Computational and Graphical Statistics,

pages 1–12.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological), 58(1):267–288.

Tibshirani, R. J. (2013). The lasso problem and uniqueness. Electronic Journal of Statistics,

7(none):1456 – 1490.

Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable

minimization. Journal of Optimization Theory and Applications, 109:475–494.

Wang, H. (2009). Forward regression for ultra-high dimensional variable screening. Journal

of the American Statistical Association, 104(488):1512–1524.

Wu, T. T. and Lange, K. (2008). Coordinate descent algorithms for lasso penalized regres-

sion. The Annals of Applied Statistics.

24

Yang, J. and Hastie, T. (2024). A fast and scalable pathwise-solver for group lasso

and elastic net penalized regression via block-coordinate descent. arXiv preprint

arXiv:2405.08631.

Yang, Y. and Zou, H. (2015). A fast unified algorithm for solving group-lasso penalize

learning problems. Statistics and Computing, 25(6):1129–1141.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

68(1):49–67.

Zhou, H., Hu, L., Zhou, J., and Lange, K. (2019). Mm algorithms for variance components

models. Journal of Computational and Graphical Statistics, 28(2):350–361.

25

Supplementary Materials for “A Fast MM
Algorithm for Group Lasso”

A Sphering in Rank-Deficient Case

If Xj is not full rank, we can use the thin QR factorization, Xj = Z′
jR

′
j, where Z

′
j ∈ Rn×rj

is a full-rank matrix with rj orthogonal columns and R′
j ∈ Rrj×pj , with rj = rank(Z′

j) < pj.

We note that in this case there are infinitely many β̂j that satisfy θ̂j = Rjβ̂j. This implies

that the solution to the original problem is not unique, which is not necessarily due to the

sphering process alone. Even without sphering, the group lasso solution (minimizer of (3)

where Zj is replaced with Xj) may not be unique when Xj is not full rank. The so-called

group general position is a sufficient condition for uniqueness. In Section 3.4 we discuss this

assumption in more detail. While the transformation θ̂j = Rjβ̂j may be underdetermined,

we interpret θ̂j = 0 to indicate that the corresponding group of features βj is not relevant

for prediction. This interpretation is motivated by the observation that the penalty in

problem (3), when applying the transformation θj = Rjβj and utilizing (2), is equivalent

to λ
√
pj ∥θj∥2 = λ

√
pj∥Xjβj∥2. In other words, rather than penalizing the coefficient βj, we

penalize the mean response Xjβj. Using this penalty is advantageous because: i) it results

in a elegant closed-form block-coordinate updating formula, which we detail in Section 2, ii)

it improves model selection, and iii) it aligns with the standard practice of normalizing each

predictor to have a unit norm when groups consist of a single predictor. These advantages

are empirically and theoretically examined in Simon and Tibshirani (2012).

1

B BCD Algorithm

The following code provides a simple coordinate descent algorithm for minimizing (3).

Algorithm B.1: Minimizing f(θ) via BCD (Breheny and Huang, 2015)

input: {Z1, . . . ,Zd},y, λ, ϵ, initial {θj} and residual r := y −
∑

j Zjθj

output: (global) minimizer {θ̂j} and updated r := y −
∑

j Zjθ̂j

1 α← nλ
[√
p1, . . . ,

√
pJ
]
, t← 0

2 repeat // iterate over CD cycles

3 θold ← θ, t← t+ 1

4 for j = 1, . . . , J do // cycle

5 θnew
j ← Sαj

(
Z⊤

j r + θj

)
6 if θj ̸= θnew

j then // change in θj ⇒ update r

7 r ← r + Zj(θj − θnew
j) // update r

8 θj ← θnew
j

9 until maxj p
−1
j ∥θj − θold

j ∥2 < ϵ

10 return {θ̂j}, r

The main computational cost in Algorithm B.1 (Breheny and Huang, 2015) arises from

calculating the term Z⊤
j r for each coordinate and the term Zj(θj − θnew

j) whenever an

update is made.

C MM Algorithm

The following code provides a MM algorithm for minimizing (3).

2

Algorithm C.1: Minimizing f(θ) via MM

input: {Z1, . . . ,ZJ},y, λ, ϵ, c

output: (global) minimizer {θ̂j}, γ̂, A, Gy

1 γ ← 0, θ ← 0, A ← ∅, α← nλ
[√
p1, . . . ,

√
pJ
]
, Gy ← y, ZA ← 0, t← 0

2 repeat // iterate over MM cycles

3 t← t+ 1

4 γold ← γ

5 θold ← θ

6 τ ←
[
∥Z⊤

1 Gy∥, . . . , ∥Z⊤
JGy∥

]
7 w ← getWeights(α, τ ,γ)

8 for j = 1, . . . , J do // cycle

9 γnew ← Sαjwj

(
(wj + γj)τj

)/
αj

10 if γj ̸= γnew then // change in γj ⇒ update A

11 if γnew = 0 then // downsize A,ZA

12 remove j and Zj from A and ZA, respectively

13 else if j ̸∈ A then // upsize A,ZA

14 A ← A∪ j, ZA ← [ZA,Zj]

15 γj ← γnew

16 θj ← γjZ
⊤
j Gy

17 Using the linear map A : x 7→ x+ ZA(γA ⊙ (Z⊤
Ax)) and initializing from Gy,

18 take c steps of the conjugate gradient algorithm to update Gy ≈ A−1y.

19 until maxj p
−1
j ∥θj − θold

j ∥2 < ϵ

20 γ̂ ← γ

21 θ̂ ← θ

22 return {θ̂j}, γ̂,A,Gy

Algorithm C.1 takes as inputs the sphered group matrices Z1,Z2, . . . ,ZJ , the n-dimensional

3

response vector y, the regularization parameter λ, the tolerance parameter ϵ, and the num-

ber of conjugate gradient steps c. In Step 7, the algorithm calls the function getWeights

to optimally assign weights, as detailed in supplementary Section G. Once the termination

condition in Step 19 is satisfied, the algorithm outputs the minimizer θ̂ for (3), the min-

imizer γ̂ for (11), the activated set A, and the vector G(γ̂)y, which is equivalent to the

residual vector r. This equivalence is proven in supplementary Section D.

D Proof of KKT Optimality Conditions

Proof of Theorem 3.1. First, note that A⊤(AA⊤ + I) = (A⊤A + I)A⊤ implies the

push-through identity given by

(A⊤A+ I)−1A⊤ = A⊤(AA⊤ + I)−1.

Since θ = Γ2Z⊤G(γ)y and

G(γ) =
(
I+ ZΓ2Z⊤)−1

,

the push-through and Woodbury identities (Henderson and Searle, 1981) yields the follow-

ing:

G(γ)y = (I− ZΓ(I+ ΓZ⊤ZΓ)−1ΓZ⊤)y

= y − ZΓ(I+ ΓZ⊤ZΓ)−1ΓZ⊤y

= y − ZΓ2Z⊤(I+ ZΓ2Z⊤)−1y = y − Zθ. (D.1)

Assume that (8) holds. Then, Z⊤
j (y − Zθ) = Z⊤

j G(γ)y = αjθj

/
∥θj∥2 for j ∈ A. Taking

the norm on both sides and combining (D.1) proves that (8)⇒(10).

Next, assume (10) holds. Then, ∥θj∥2 = γj∥Z⊤
j G(γ)y∥2 = γjαj when j ∈ A which im-

plies γj = ∥θj∥
/
αj. Substituting γj = ∥θj∥

/
αj into θj = γjZ

⊤
j G(γ)y and considering (D.1)

we have (10)⇒(8).

4

With (8)⇔(10) established, we have γj = ∥θj∥
/
αj for j ∈ A and 0 = γjZ

⊤
j G(γ)y ⇒

0 = γj∥Z⊤
j G(γ)y∥ for j /∈ A. □

Proof of Lemma 3.1. Consider the partial derivatives of g given by,

∂g(γ)

∂γj
= −

∥∥Z⊤
j G(γ)y

∥∥2
2
+ α2

j , j = 1, . . . , J,

where we use ∂G(γ)
∂γj

= −G(γ)ZjZ
⊤
j G(γ). The KKT necessary conditions for the global

minimizer γ̂ (since g is convex) require each component of the gradient vector to satisfy,

∂g(γ)

∂γj

∣∣∣∣∣
γj=γ̂j

∈

{0}, γ̂j > 0

[0,∞), γ̂j = 0

, j = 1, . . . , J.

This implies equations (13) and (14). □

Proof of Corollary 3.1. Since γ̂ satisfies equations (13) and (14), Theorem 3.1 implies

that θ̂ = Γ̂2Z⊤G(γ̂)y is a minimizer of the original group lasso problem (3). Moreover,

from Theorem 3.1 we have that γ̂j = ∥θ̂j∥
/
αj for j ∈ A and γ̂j∥Z⊤

j G(γ̂)y∥2 = 0 for

j /∈ A. This implies that either γ̂j = 0 or ∥Z⊤
j G(γ̂)y∥2 = 0 when j /∈ A. We now

argue ∥Z⊤
j G(γ̂)y∥2 = 0 ⇒ γ̂j = 0 which further implies that γ̂j = 0 for all j /∈ A.

This is true because the inequality in the KKT condition ∥Z⊤
j G(γ̂)y∥ ≤ αj is strict when

∥Z⊤
j G(γ̂)y∥2 = 0 as αj > 0, and therefore the partial derivative ∂g(γ)

∂γj
is strictly positive.

The stationarity of a KKT point then implies that we must have γ̂j = 0. Therefore,

A ≡ {j : γ̂j > 0}.

Therefore, the conditions (10) are satisfied, and the vector θ̂ = Γ̂2Z⊤G(γ̂)y meets the

group lasso KKT conditions. These equations also provide an alternative representation of

the group lasso KKT conditions (8) in terms of the auxiliary variables γ alone. □

E Proof of Group Lasso Uniqueness

We now prove Lemma 3.2, which establishes the uniqueness of the problem (12) under the

Assumption 3.1.

5

Before we delve into the proof, we introduce some useful notation. Suppose v =[
v⊤
1 , . . . ,v

⊤
J

]⊤ ∈ Rp, where vj ∈ Rpj and
∑J

j=1 pj = p. If D is a subset of J groups,

i.e., D ⊆ {1, . . . , J}, then vD is the vector of length
∑

j∈D pj formed by restricting v to the

group coordinates indexed by D. Specifically, vD consists of the components of vj ∈ Rpj

for each j ∈ D, ordered according to the indices in D.

Similarly, if V ∈ Rn×p is a real matrix, then VD ∈ Rn×
∑

j∈D pj denotes the submatrix

of V formed by selecting the columns corresponding to the group coordinates in D. Ad-

ditionally, VD,D represents the principal submatrix of V, obtained by selecting both the

rows and columns indexed by the group coordinates in D.

Proof of Lemma 3.2. We reformulate the inequality-constrained problem in (12) as

min g(γ) subject to cj(γ) ≤ 0, j = 1, . . . , J,

where cj(γ) = −γj for j = 1, . . . , J . The corresponding Lagrangian function is given by

L(γ,µ) = g(γ)−
J∑

j=1

µjγj.

Assume that γ̂ satisfies the first-order KKT conditions as stated in Lemma (3.1). Further-

more, suppose there exists a corresponding vector of Lagrange multipliers µ̂ such that, for

all z ̸= 0 satisfying ∇cj(γ̂)⊤z = 0 for every j ∈ A(γ∗)c = {j : cj(γ∗) = 0}, we have

z⊤∇2
γγL(γ̂, µ̂)z > 0. (E.1)

Under these conditions, γ∗ is a strict local minimizer (see Chapter 3.1 in Bertsekas (2014)).

Since the constraints are linear, ∇2
γγL(γ,µ) simplifies to the Hessian matrix H(γ),

eliminating its dependence on µ̂. The entries of H(γ) are given by [H(γ)]jk :=
∂2g(γ)
∂γj∂γk

. For

each j, k ∈ 1, . . . , J , we have

∂2g(γ)

∂γj∂γk
= y⊤∂

2G(γ)

∂γj∂γk
y.

To find ∂2G(γ)
∂γj∂γk

, we begin with the first-order derivatives:

∂G(γ)

∂γj
= −G(γ)

∂G(γ)−1

∂γj
G(γ) = −G(γ)ZjZ

⊤
j G(γ). (E.2)

6

Thus, the second-order derivatives are given by

∂2G(γ)

∂γj∂γk
= −G(γ)ZjZ

⊤
j

∂G(γ)

∂γk
− ∂G(γ)

∂γk
ZjZ

⊤
j G(γ).

Using (E.2), we define Ajk(γ) := G(γ)ZjZ
⊤
j G(γ)ZkZ

⊤
k G(γ), so that

∂2G(γ)

∂γj∂γk
= Ajk(γ) + [Ajk(γ)]

⊤ ,

and therefore,

y⊤∂
2G(γ)

∂γj∂γk
y = bj(γ)

⊤G(γ)bk(γ) + bk(γ)
⊤G(γ)bj(γ),

where bj(γ) := ZjZ
⊤
j G(γ)y for each j. Consequently, we can write

∂2g(γ)

∂γj∂γk
= 2bj(γ)

⊤G(γ)bk(γ).

Letting B(γ) be the matrix whose j-th column is bj(γ), the Hessian of g(γ) is

H(γ) = 2B(γ)⊤G(γ)B(γ).

This expression shows that H(γ) is positive semi-definite for all γ ∈ RJ
+, making g(γ)

convex on RJ
+. Therefore, the second-order condition (E.1) provides a criterion for the

uniqueness of γ̂. Noting that ∇cj(γ̂) = −ej, where ej is the unit vector with a 1 in the

j-th position and 0’s elsewhere, we have that

{z ∈ RJ : z⊤∇cj(γ̂) = 0,∀j ∈ A(γ̂)c} = {z ∈ RJ : zA(γ̂)c = 0}.

Consequently, (E.1) reduces to verifying that the reduced Hessian HA,A(γ̂) is positive

definite. In summary, if HA,A(γ̂) is positive definite, then γ̂ must be an isolated local

minimizer and hence unique.

We now use the contradiction argument from Proposition 12 in Mishkin and Pilanci

(2022) to show that positive definiteness holds under Assumption 3.1 (group general po-

sition). Suppose HA,A(γ̂) is not positive definite. Then, as G(γ̂) is positive definite, the

7

columns of the matrix B(γ̂)A must be linearly dependent and there exist si ∈ {+1,−1}

and δi ≥ 0 such that

sjbj(γ̂) =
∑
i∈A\j

δisibj(γ̂)

=⇒ sjZjZ
⊤
j G(γ̂)y =

∑
i∈A\j

δisiZiZ
⊤
i G(γ̂)y

=⇒ ZjZ
⊤
j G(γ̂)y =

∑
i∈A\j

δisjsiZiZ
⊤
i G(γ̂)y.

Taking the inner product of both sides with the residual G(γ̂)y, and using (13) along with

the definition αj = nλ
√
pj,

=⇒ pjn
2λ2 =

∑
i∈A\j

δisjsipin
2λ2

=⇒ 1 =
∑
i∈A\j

δisjsi
pi
pj
.

Thus, we deduce that

Zj

(
Z⊤

j G(γ̂)y
)
=
∑
i∈A\j

δisjsiZi

(
Z⊤

i G(γ̂)y
)

=⇒ p
−1/2
j Zj

(
Z⊤

j G(γ̂)y

αj

)
=
∑
i∈A\j

βi p
−1/2
i Zi

(
Z⊤

i G(γ̂)y

αi

)
where βi := δisjsi

pi
pj

for i ∈ A \ j and
∑

i∈A\j βi = 1. Now, suppose that |A| > n + 1.

Then, {Zi

(
Z⊤

i G(γ̂)y
)
: i ∈ A \ j} are linearly dependent and, by eliminating dependent

vectors Zi

(
Z⊤

i G(γ̂)y
)
, we can repeat the above proof with a subset A′ of at most n + 1

blocks. The last equation implies the existence of unit vectors vi which contradicts the

group general position assumption. This completes the proof. □

F Proof of Convergence

We now present three technical lemmas required to prove our main convergence result. The

following results and corresponding proofs are adapted from Zhou et al. (2019) with some

8

modifications.

Lemma F.1 (Coercive Property). The function g(γ) is coercive in the sense that the

sub-level set Rc := {γ ∈ RJ
+ : g(γ) ≤ c} is compact for every c.

Proof. To prove the coercive property, it is sufficient to show that g(0) = m for some

m ∈ R and g(γ) ↑ ∞ as ∥γ∥∞ ↑ ∞. First, we show that g(γ) is bounded from below for

γ ∈ RJ
+. Assume ∥y∥2 > 0. Then,

y⊤G(γ)y + (α⊙α)⊤γ > 0

since 0 ≺ G(γ) and y⊤G(0)y = ∥y∥ > 0. Given that αj > 0 for j = 1, . . . , J , we have

g(γ) ≥ (α⊙α)⊤γ ≥ ∥γ∥∞ max
j
α2
j .

Thus, g(γ) ↑ ∞, as ∥γ∥∞ ↑ ∞.

Lemma F.2 (Lemma S.2. in Zhou et al. (2019)). If g(M̂(γ∗)) = g(γ∗), then γ∗ is a fixed

point of M̂ in the sense that M̂(γ∗) = γ∗. Furthermore, for each component γ∗j > 0, we

have ∂g(γ)
∂γj

∣∣∣
γj=γ∗

j

= 0.

Proof. Using conditions (15) we have,

g(M̂(γ∗))
majorizing property

≤ hŵ(M̂(γ∗),γ∗)
minimization of MM map

≤ hŵ(γ
∗,γ∗) = g(γ∗).

Since g(γ∗) = g(M̂(γ∗)), equality must hold above. Therefore,

hŵ(M̂(γ∗),γ∗) = hw∗(γ∗,γ∗).

As hŵ(γ,γ
∗) has a unique minimum we have M̂(γ∗) = γ∗. Moreover, if γ∗j > 0 we have

∂

∂γj
hŵ(γ,γ

∗)

∣∣∣∣
γj=γ∗

j

= 0.

Note that hŵ(γ,γ
∗)− g(γ) ≥ 0 has a global minimum at γ = γ∗, so that if γj > 0, then

∂

∂γj
(hŵ(γ,γ

∗)− g(γ))
∣∣∣∣
γj=γ∗

j

= 0

implies that ∂g
∂γj

(γ)
∣∣∣
γj=γ∗

j

= 0.

9

Lemma F.3 (Lemma S.3. in Zhou et al. (2019)). The distance between successive iterates

∥γ(t+1) − γ(t)∥2 converges to 0.

Proof. Suppose on the contrary that ∥γ(t+1)−γ(t)∥2 does not converge to 0. Then one can

extract a subsequence {tk}k≥1 such that

∥γ(tk+1) − γ(tk)∥2 ≥ ϵ > 0

for all k. Let R0 be the compact sub-level set {γ ∈ RJ
+ : g(γ) ≤ g(γ(0))}. Since the sequence

{γ(tk)}k≥1 is confined to R0, one can pass to a subsequence if necessary and assume that

γ(tk) converges to a limit γ∗ and that γ(tk+1) converges to a limit γ∗∗. Taking limits in the

relation γ(tk+1) = M̂(γ(tk)) and invoking the continuity M̂(γ) imply that γ∗∗ = M̂(γ∗).

Because the sequence g(γ(tk)) is monotonically non-increasing in k and bounded below

on R0, it converges to a limit g∗. Hence, the continuity of g(γ) implies

g(γ∗) = lim
k→∞

g(γ(tk)) = g∗ = lim
k→∞

g(γ(tk+1)) = g(γ∗∗) = g(M̂(γ∗)). (F.1)

Lemma F.2 therefore gives γ∗∗ = γ∗ = M̂(γ∗) = γ∗, contradicting the bound ∥γ∗−γ∗∗∥2 ≥

ϵ entailed by inequality (F.1).

With these lemmas, we are ready to prove the main convergence result.

Proof of Theorem 3.2. First, the sequence {γ(t)}t≥0 is contained within the set R0 =

{γ ∈ RJ
+ : g(γ) ≤ g(γ(0))}, which ensures the existence of a convergent subsequence.

Consequently, the set of limit points T of {γ(t)}t≥0 is non-empty. Since {γ(t)} lies in the

bounded and closed set R0, and by Lemma F.3 we have ∥γ(t+1)−γ(t)∥ → 0, it follows that T

is connected (by Ostrowski’s theorem, Proposition 8.2.1, Lange et al. (2010)). Furthermore,

Lemma F.3 implies that for any γ∗ ∈ T , we have γ∗ = M̂(γ∗).

We now show that γ∗ ∈ T satisfies the KKT conditions for problem (12). Specifically,

γ∗
j must satisfy either:

1. γ∗
j > 0 and ∂

∂γj
g(γ)

∣∣∣
γj=γ∗

j

= 0, or

10

2. γ∗
j = 0 and ∂

∂γj
g(γ)

∣∣∣
γj=γ∗

j

≥ 0,

for j = 1, . . . , J .

If γ∗
j > 0, Lemma F.2 gives ∂g(γ)

∂γj

∣∣∣
γj=γ∗

j

= 0, which proves the first part. For the second

part, suppose by way of contradiction that the set

B =

{
j : γ∗

j = 0,
∂

∂γj

g(γ)

∣∣∣∣
γj=γ∗

j

< 0

}

is non-empty. Note that ∂
∂γj
g(γ)

∣∣∣
γj=γ∗

j

= α2
j − (τ ∗j)

2, where τ ∗j =
∥∥Z⊤

j G(γ∗)
∥∥. Then, for

j ∈ B, we have (αj − τ ∗j) < 0, as αj > 0 and τ ∗j ≥ 0. If we define j′ := argmaxj∈{1,...,J} ξj =

(αj − τ ∗j)2, then by the optimal weight allocation we have ŵj′ > 0. Now, since αj − τ ∗j = 0

for j ∈ A(γ∗) and (αk − τ ∗j) ≥ 0 for j ∈ Bc ∩ A(γ∗)c, we conclude that j′ ∈ B (see

supplementary Section G for further details on weight allocation).

Therefore, there exists j ∈ B such that

M̂(γ∗j) = γ∗j
τ ∗j
αj

+
(τ ∗j − αj)

αj

ŵj > γ∗j ,

where we use the MM updating formula (19) and know that ŵj > 0 and τ ∗j −αj > 0. This

contradicts γ∗ = M̂(γ∗) and proves the second part of the KKT conditions.

Thus, the points γ∗ ∈ T satisfy the KKT conditions for problem (12). If the KKT

point for problem (12) is unique, the set of limit points T reduces to a single point, and

limt→∞ γ(t) exists and is equal to γ∗ (Proposition 8.2.1, Lange et al. (2010)). □

G Appendix: Derivation of Optimal Weights

Recall, that to obtain the lowest possible upper bound hw
(
M(γ̃), γ̃

)
≥ g(M(γ̃)), we solve,

ŵ = argmin
w∈RJ

+,1⊤w=1

min
γ∈RJ

+

hw(γ, γ̃)

= argmin
w∈RJ

+,1⊤w=1

hw
(
M(γ̃), γ̃

)
.

(G.1)

11

Here, the upper bound hw(γ, γ̃) is given as

hw(γ, γ̃) =
∑
j

[
∥(wj + γ̃j)Z

⊤
j G(γ̃)y∥2

wj + γj
+ wj

(
∥G(γ̃)y∥2 − ∥Z⊤

j G(γ̃)y∥2
)
+ α2

jγj

]
.

Solving ŵ is a convex problem and can be solved exactly. To proceed, we consider the

unique solution γ̆ := argminγ∈RJ
+
hw(γ, γ̃) which, based on the update rule in (19), can be

reformulated as,

γ̆j ←
(wj + γ̃j)∥Z⊤

j G(γ̃)y∥
αj

[
1− wjαj

(wj + γ̃j)∥Z⊤
j G(γ̃)y∥

]
+

, j = 1, . . . , J. (G.2)

Recalling the definitions τj := ∥Z⊤
j G(γ̃)y∥ ≥ 0 and αj := nλ

√
pj > 0, we can simply γ̆

in (G.2) as,

γ̆j =

0, if wj(αj − τj) ≥ γ̃jτj

(γ̃j+wj)τj
αj

− wj, if wj(αj − τj) < γ̃jτj

.

Substituting back into the upper bound hw, we have

hw(γ̆, γ̃) =
∑

j:wj(αj−τj)≥γ̃jτj

(wj + γ̃j)
2

wj

τ 2j − wjτ
2
j

+
∑

j:wj(αj−τj)<γ̃jτj

2(wj + γ̃j)αjτj − wj(α
2
j + τ 2j)

+
∑
j

wj(∥G(γ̃)y∥2).

When considering the feasible set {w ∈ RJ
+ : 1⊤w = 1}, the last term,

∑
j wj(∥G(γ̃)y∥2),

can be ignored. The first sum represents the contribution of the bound from the variables

set to zero, while the second sum represents the contribution from the activated variables.

For variables that remain unactivated (γ̃j = 0), there is no contribution to the bound. This

is true since,

(wj + 0)2

wj

τ 2j − wjτ
2
j = 0.

12

By further simplifying hw(γ̆, γ̃), the problem (G.1) can be stated as,

ŵ = argmin
w∈RJ

+,1⊤w=1

∑
j:wj(αj−τj)≥γ̃jτj

(
(γ̃jτj)

2

wj

+ 2γ̃jτ
2
j

)

+
∑

j:wj(αj−τj)<γ̃jτj

(
2γ̃jαjτj − wj(αj − τj)2

)
.

Note that when αj − τj < γ̃jτj, the update γj cannot be made unactivated for any

wj ∈ [0, 1]. Considering this distinction, we can simplify the problem by focusing on the

contributions to the bound hw(γ̆, γ̃) where, regardless of the choice of wj, the variables

either remain activated or are set to zero. Thus, problem (G.1) simplifies to:

ŵ = argmin
w∈RJ

+,1⊤w=1

∑
j:αj−τj<γ̃jτj

(
2γ̃jαjτj − wj(αj − τj)2

)
+

∑
j:αj−τj≥γ̃jτj

[
1
{wj<

γ̃jτj
αj−τj

}

(
2γ̃jαjτj − wj(αj − τj)2

)
+ 1

{wj≥
γ̃jτj

αj−τj
}

(
(γ̃jτj)

2

wj

+ 2γ̃jτ
2
j

)]
.

This expression shows that problem (G.1) can be rewritten as a sum of convex functions

pj : [0, 1]→ R. Specifically,

ŵ = argmin
w∈RJ

+,1⊤w=1

∑
j

pj(wj). (G.3)

Define cj :=
γ̃jτj
αj−τj

. Then,

pj(wj) :=

(γ̃jτj)

2

wj
+ 2γ̃jτ

2
j , if wj ≥ cj and cj ∈ (0, 1]

2γ̃jαjτj − wj(αj − τj)2, else

.

If cj ∈ (0, 1], then limwj→c−j
pj(wj) = limwj→c+j

pj(wj) = γ̃jτj(αj + τj). Moreover,

limwj→c−j
p′j(wj) = limwj→c+j

p′j(wj) = −(αj − τj)
2. This means each pj(wj) is a contin-

uously differentiable function for wj ∈ [0, 1]. See Figure 1, where wj = cj is a natural

13

0 1

Figure 1: The function pj(wj).

knot-point where the variable γj is made unactivated. For wj < cj, the contribution to the

bound decreases linearly as a function of wj. For wj > cj, the contribution to the bound

decreases at a decreasing rate as a function of wj.

To solve (G.3), we examine the KKT conditions with Lagrange multipliers η∗ ∈ RJ for

the inequality constraints w ∈ RJ
+ and ν∗ ∈ R for the equality constraint 1⊤w = 1. The

conditions are given as,

p′j(ŵj)− η∗j + ν∗ = 0, η∗j ŵj = 0, η∗j ≥ 0, j = 1, . . . , J. (G.4)

Given 1⊤ŵ = 1 and ŵ ∈ RJ
+, we note from the first condition that each η∗j acts as a slack

variable and can be eliminated, leaving,

ŵ ∈ RJ
+, 1⊤ŵ = 1, ŵj(ν

∗ + p′j(ŵj)) = 0, j = 1, . . . , J,

ν∗ ≥ −p′j(ŵj), j = 1, . . . , J.

These equations imply that when ŵj > 0, the negative gradient −p′j(ŵj) = ν∗. Note that,

−p′j(wj) :=

(γ̃jτj)

2

w2
j
, if wj ≥ cj and cj ∈ (0, 1]

(αj − τj)2, else

.

14

Since −pj(wj) are non-increasing functions for wj ∈ [0, 1] and −pj(0) = (αj − τj)2, we

must have ŵj = 0 when (αj − τj)2 < ν∗. Without loss of generality, we assume the indexes

are sorted such that (α1 − τ1)2 ≥ (α2 − τ2)2 ≥ · · · ≥ (αJ − τJ)2 (we can reverse the sort to

obtain the original index after weight allocation). Our algorithm checks two possible cases

for ν∗.

Case 1.

ν∗ = (αk − τk)2, for k ∈ {1, . . . , J}.

In this case,

ŵj :=

(γ̃jτj)/
√
ν∗, j < k

1−
∑

i<k ŵi, j = k

0, j > k

.

This solution is feasible if −pk(ŵk) = ν∗, where ŵk = 1 −
∑

j ̸=k ŵj. This holds if 0 < ŵk

and ŵk < ck or ck /∈ [0, 1].

Case 2.

(αk − τk)2 > ν∗ > (αk+1 − τk+1)
2, for k ∈ {1, . . . , J}.

In this case,

ν∗ = −pj(ŵj) =
(γ̃jτj)

2

w∗
j

, for j ≤ k.

Solving simultaneously with the constraint
∑

j ŵj = 1, we obtain:

ν∗ =

(∑
j≤k

γ̃jτj

)2

.

The optimal weights are then,

ŵj :=

(γ̃jτj)/

√
ν∗, j ≤ k

0, j > k

.

15

Algorithm G.1 iterates over k = 1, . . . , J , evaluating the two cases described above. It

optimally updates the weight vector, terminating once the correct case is identified and

returning the feasible solution. Note that we remove j from sorted indexes if γ̃j = 0 and

αj − τj ≥ 0 (in this case, ŵj ← 0 and γj remains unactivated).

Algorithm G.1: getWeights; Optimal weights for hw(γ, γ̃)

input: α = [nλ
√
p1, . . . , nλ

√
pJ], τ = [∥Z⊤

1 G(γ̃)y∥, . . . , ∥Z⊤
JG(γ̃)y∥], γ̃

output: optimal weights w

1 w ← 0

2 U ← [u1, . . . , uJ] so that (αu1 − τu1)
2 ≥ (αu2 − τu2)

2, . . . ,≥ (αuJ
− τuJ

)2

3 U ← U \ {j : αj − τj ≥ 0, γ̃j = 0} // remove groups that remain unactivated

4 d← |U |

5 for k = 1, . . . , d do

6 ν ← (αuk
− τuk

)2

7 wuj
← (γ̃uj

τuj
)/
√
ν for j < k

8 wuk
← 1−

∑
j<k wuj

9 ck ← γ̃uk
τuk
/(αuk

− τuk
)

10 if 0 ≤ wuk
and (wuk

< ck or ck /∈ (0, 1]) then // check Case 1

11 break

12 ν ← (
∑

j≤k γ̃uj
τuj

)2

13 if (αuk
− τuk

)2 > ν > (αuk+1
− τuk+1

)2 then // check Case 2

14 wuj
← (γ̃uj

τuj
)/
√
ν for j ≤ k

15 break

16 return w

16

H Fitting Over a Grid

The BCD Algorithm B.1 and the MM Algorithm C.1 solve for θ̂ for a single value of

λ. Usually, the best λ is unknown before fitting the group lasso, and the optimal λ is

determined through cross-validation over a grid. Consider a grid of m values:

λ1 < λ2 < . . . < λm.

Typically, m is 100 or 1000. Larger values of λ correspond to sparser solutions (more

zero-groups in θ̂λ), while smaller values correspond to fewer zero-groups in the solution

vector.

The largest value, λm, is chosen so that it is equal to the smallest λ for which θ̂λ = 0.

By inspecting the KKT conditions (8), it can be shown that λ∗ := maxj
∥Z⊤

j y∥
n
√
pj

satisfies

this condition. We start with the zero solution θ̂λm corresponding to λm := λ∗ and then

compute θ̂λm−1 for a smaller λm−1 using θ̂λm as an initial guess. Once θ̂λm−1 is computed,

we proceed to θ̂λm−2 using θ̂λm−1 as the initial guess, and so on, until the entire grid of size

m is covered. This approach, often called “warm starts”, ensures that the initial values are

close to the solution.

Typically, the smallest value is set to λ1 := ωλm, where ω is a small number, say 10−1.

The values between λ1 and λm are determined by creating a log-spaced grid:

λj = exp

(
ln(λ1) +

j − 1

m− 1
(ln(λm)− ln(λ1))

)
, j = 1, . . . ,m.

In other words, the logarithms of the λ values are equally spaced on a grid with m points.

I Additional Numerical Studies

I.1 Iterations for Regularization Paths

Table I.1 displays the mean iterations over 50 simulation for the experiment conducted in

Section 4.1.2.

17

Table 1: Iterations for Setting 1 and Setting 2. Means of 50 replications are reported.

Correlation (ψ, ρ)

Setting Group Size Method (0.3, 0.3) (0.6, 0.6) (0.9, 0.9)

1 3 BCD 4.63× 105 8.71× 105 4.18× 105

MM 2.97× 104 2.65× 104 2.18× 104

5 BCD 3.71× 105 4.11× 105 1.88× 105

MM 2.28× 104 2.02× 104 1.79× 104

2 3 BCD 4.58× 105 7.08× 105 4.59× 105

MM 2.64× 104 2.46× 104 2.75× 104

5 BCD 2.97× 105 3.37× 105 2.18× 105

MM 2.00× 104 2.03× 104 2.69× 104

I.2 Example Convergence Paths

In the following experiment, we compare the convergence of the MM Algorithm C.1 and

the BCD Algorithm B.1 for fixed values of λ, n, d, and J . We generate 100 datasets

under setting 2, with 100 activated groups (k = 100), a group size of d = 3, and a total

of 1000 groups (J = 1000). The correlation parameters are set as ρ = 0.3 and ψ = 0.3.

We fix λ = 15/n where n = 1000 observations. We run MM Algorithm C.1 and the BCD

Algorithm B.1 on these datasets to obtain θ̂. The average number of non-zero groups in θ̂

is 256.17, where the average is computed over all the datasets generated.

Figure 2 shows that, under these simulation settings, the MM Algorithm C.1 outper-

forms the BCD Algorithm B.1 in terms of convergence with respect to the number of iter-

ations t, whether measuring the maximum change in θ or the minimum obtained objective

18

function f . Initially, the MM Algorithm may appear slower because it starts with θ(0) = 0,

and only a few groups become activated at each iteration due to the restricted number of

positive weights. However, after approximately 200 iterations, the MM Algorithm displays

more rapid convergence. Therefore, the MM Algorithm is significantly quicker in achieving

a high-accuracy solution in this setting.

Another way to demonstrate the superiority of the MM algorithm C.1 in this simulation

setting is by showing the iteration t at which each algorithm identifies the activated set

at the group lasso solution, that is, for what t does A(t) = A. Figure 3 shows that the

MM Algorithm, while making fewer changes to A(t) at each iteration, reaches A in fewer

iterations (on average 400) compared to the BCD Algorithm B.1. The BCD Algorithm

approximates the correct activated set in relatively few iterations but takes many more

iterations to finally stabilize on the correct activated set, typically identifying the correct

activated set by iteration 1000.

I.3 Computational Performance for Varying Number of Obser-

vations and Groups

We now present results studying the effect of the number of groups J and the number of

observations n on the performance of the MM Algorithm C.1 and the BCD Algorithm B.1.

We generate datasets with a fixed group size of d = 3. The correlation parameters are set

to ρ = 0.3 and ϕ = 0.3.

For each scenario, where we vary either J or n, we set λ by first constructing a grid

as described in supplementary Section H with λ1 = ωλm, where ω = 10−1. Then, in each

simulation, we run the MM Algorithm C.1 and the BCD Algorithm B.1 for a single λ = λ50

value, i.e., the mid-value on the grid.

Figure 4 shows the runtime and mean iterations until convergence for varying numbers

of groups J , averaging over 50 simulations. Each dataset is simulated under Setting 2,

19

(a) (b)

Figure 2: Comparison of the BCD and MM algorithms over two convergence criteria across

iterations. Figure 2a shows the convergence for the maximum change in θ over the number

of iterations t. Figure 2b shows the convergence for the objective function f over the

number of iterations t. The value of f ∗ is obtained by running the MM Algorithm C.1 for

t∗ = 103 iterations and evaluating the objective f ∗ := f(θ̂(t∗)). Results from all the 100

simulations are shown, with the median path highlighted.

with k = J/10 activated groups and n = 1000 observations. Figure 4 also shows the mean

runtime and mean iterations t for varying numbers of observations n, averaged over 50

simulations. Each dataset is simulated under Setting 2, with k = 100 activated groups and

J = 1000 total groups.

We observe an order of magnitude improvement in the MM Algorithm over the BCD

Algorithm in both iterations and runtime for all values of J and n. As J increases, the

number of iterations for both algorithms shows minimal growth, but the runtime increases,

as each cycle becomes more computationally expensive. As n increases, the number of iter-

ations required for convergence decreases for both algorithms. These simulations indicate

that the MM Algorithm is well-suited for problems with large n and J .

20

Figure 3: Comparison of the BCD and MM algorithms based on the sizes of the activated

set. The value of A∗ is obtained by running the MM Algorithm C.1 for t∗ = 103 iterations

and defining A∗ := A(t∗). The mean path from 100 simulations is shown.

I.4 Pseudo Real Data

In the following experiemtns we simulate y from model (1), using matrices Xj constructed

from a real dataset containing genetic variants of mice. Each Xj is constructed from

the mouse single nucleotide polymorphism (SNP) array data set available from the Open

Mendel project (Zhou et al., 2020). The dataset consists of X, an n×p matrix representing

p genetic variants for n individual mice. Each entry of the matrix represents an allele count

and can take on the discrete values Xi,j = {0, 1, 2}. For this experiment, p = 10,150 and

n = 1,940. We artificially generate J different genetic regions by partitioning the columns

of X into Xj=1,...,J gene matrices, where Xj ∈ Rn×d, and d is the group size. We simulate

β and y as described in Section 4.1.1. In this case, y mimics a vector of quantitative trait

measurements for the n mice.

Each simulation scenario is replicated 25 times. The mean running time and mean

number of iterations are reported. The results of the genetic study simulation are provided

in Table 2. We observe that the MM algorithm outperforms the BCD algorithm for all

values of d for this dataset in both the number of iterations and running time until conver-

gence. These simulations provide a good example of the suitability of the MM algorithm

21

https://openmendel.github.io/SnpArrays.jl/latest/#Example-data

(a) Running Time (s) (b) Iterations

Figure 4: Runtime and iterations t until convergence for the BCD and MM algorithms for

increasing number of groups J . The mean values from 50 simulations are reported, with

standard errors represented by error bars.

for non-Gaussian data.

I.5 Local Convergence Experiment

In the following study we investigate the empirical convergence behavior under the assump-

tion that both algorithms have already identified the activated set, providing insights into

their performance locally near the optimal solution. In Figure 3, we demonstrated that

under mild correlation between the predictors, the MM algorithm can identify the activated

set in fewer iterations compared to the BCD algorithm. We now investigate the convergence

behavior under the assumption that both algorithms have already identified the activated

set. This analysis should provide insight into how the MM and BCD algorithms perform

locally near the optimal solution.

To this end, we simulate datasets where the true activated set is large and easily identifi-

able by both algorithms. Specifically, we set the group size to d = 3 with a total of J = 100

groups, of which k = 90 are activated. The number of observations is n = 1000, and the

sparsity parameter is set to λ = 5/n to encourage non-sparse solutions. We consider two

22

(a) Running Time (s) (b) Iterations vs n

Figure 5: Runtime and iterations t until convergence for the BCD and MM algorithms for

increasing number of observations n. The mean values from 50 simulations are reported,

with standard errors represented by error bars.

correlation settings: one where the correlation parameters are ρ = 0.3 and ψ = 0.3, and

another where ρ = 0 and ψ = 0. In the latter case, the condition number of the data

matrix X will be close to one, as E
[
X⊤X

]
= Ip. We define the iteration counter t′ as

the number of iterations starting from the point at which the activated set A is identified

by the algorithm. At this stage, no new groups become activated or unactivated, and the

focus shifts solely to satisfying the KKT conditions for the activated groups.

The results in Figure 6a indicate that when the data is very well-conditioned, both

the MM Algorithm C.1 and the BCD Algorithm B.1 converge to the solution in a few

iterations. In Figure 6b, under mild correlation from (22) the expected condition number

of X⊤X, as described by (22), is higher than in Figure 6a, the MM algorithm is minimally

impacted and, on average, converges to a tolerance of 10−11 in 50 iterations. In contrast,

the conditioning affects the BCD algorithm more and the algorithm shows minimal progress

toward the solution within the same number of iterations. These experiments suggest that

the auxiliary objective g(γ) is better-behaved near the solution when the data X is poorly

conditioned. This observation motivates future theoretical investigations into the local

23

Table 2: Running Time (s) and No. of Iterations for Pseudo Data. Means of 25 replications

are reported.

Setting Group Size Method Running Time

(s)

No. of

Iterations

1 10 BCD 1.00× 103 6.28× 104

MM 5.12× 102 3.84× 104

25 BCD 6.20× 102 4.18× 104

MM 3.12× 102 2.02× 104

2 10 BCD 7.99× 102 5.11× 104

MM 4.46× 102 3.65× 104

25 BCD 5.59× 102 3.76× 104

MM 2.94× 102 1.98× 104

convergence rates of the MM Algorithm C.1 and the BCD Algorithm B.1.

I.6 Lasso Simulations

In this section, we demonstrate that the MM algorithm is competitive when the group size

is one (pj = 1) for j = 1, . . . , J . In this case, the BCD algorithm reduces to the standard

coordinate descent algorithm for lasso. As in Section 4.1.2, we present results where θ̂

is computed over a grid of λ values, as described in supplementary Section H. We set

λ1 = ωλm, where ω = 10−1. We run the MM Algorithm C.1 and the BCD Algorithm B.1

on datasets simulated according to Setting 1 as described in Section 4.1.1, with group sizes

d = 1. In these simulations, the number of observations is n = 1000, and the total number

of predictors is p = 1000. The number of activated groups is k = 100 with SNR = 1.

24

(a) ρ = 0, ψ = 0 (b) ρ = 0.3, ψ = 0.3

Figure 6: Comparison of the BCD and MM algorithms once A identified. Figure 6a shows

the convergence when ρ = 0, ψ = 0. Figure 6b shows the convergence when ρ = 0.3, ψ = 0.3.

Iteration counter t′ is the number of iterations after A is identified. Results from 100

simulations are shown, with the mean path highlighted.

In Figure 7, we show the cumulative runtime and cumulative iterations as both algo-

rithms progress from λm to λ1. Let β̂(λ) denote the solution to the group lasso problem

computed with the regularization parameter λ. We also indicate the average λ index that

minimizes the prediction error ∥Xβ̂(λ) − Xβ∥, marking the optimal λ. Figure 7 clearly

shows that the MM algorithm increasingly outperforms the BCD algorithm in the less

sparse regions of the path, as λ decreases. The MM algorithm achieves up to two orders

of magnitude improvement in runtime.

References

Bertsekas, D. P. (2014). Constrained optimization and Lagrange multiplier methods. Aca-

demic press.

Breheny, P. and Huang, J. (2015). Group descent algorithms for nonconvex penalized

linear and logistic regression models with grouped predictors. Statistics and Computing,

25:173–187.

25

(a) Cumulative Time(s) (b) Cumulative Iterations

Figure 7: Cumulative runtime and iterations t until convergence for the CD and MM

algorithms, as λ decreases in a regularization path. The mean values from 50 simulations are

reported, with the vertical dotted black line indicating the mean index at which prediction

error is minimized.

Henderson, H. V. and Searle, S. R. (1981). On deriving the inverse of a sum of matrices.

SIAM review, 23(1):53–60.

Lange, K., Chambers, J., and Eddy, W. (2010). Numerical analysis for statisticians, vol-

ume 1. Springer.

Mishkin, A. and Pilanci, M. (2022). The solution path of the group lasso. In OPT 2022:

Optimization for Machine Learning (NeurIPS 2022 Workshop).

Simon, N. and Tibshirani, R. (2012). Standardization and the group lasso penalty. Statistica

Sinica, 22(3):983.

Zhou, H., Hu, L., Zhou, J., and Lange, K. (2019). Mm algorithms for variance components

models. Journal of Computational and Graphical Statistics, 28(2):350–361.

Zhou, H., Sinsheimer, J. S., Bates, D. M., Chu, B. B., German, C. A., Ji, S. S., Keys, K. L.,

Kim, J., Ko, S., Mosher, G. D., et al. (2020). Openmendel: a cooperative programming

project for statistical genetics. Human genetics, 139:61–71.

26

	Introduction
	Block Coordinate Descent
	Auxiliary MM Algorithm
	Auxiliary Variable Group Lasso
	Constructing an MM Algorithm
	Optimal Weights
	Convergence and Uniqueness

	Numerical Experiments
	Simulations
	Synthetic Data Generation
	Computational Performance of Regularization Paths

	Real Data

	Conclusions
	Sphering in Rank-Deficient Case
	BCD Algorithm
	MM Algorithm
	Proof of KKT Optimality Conditions
	Proof of Group Lasso Uniqueness
	Proof of Convergence
	Appendix: Derivation of Optimal Weights
	Fitting Over a Grid
	Additional Numerical Studies
	Iterations for Regularization Paths
	Example Convergence Paths
	Computational Performance for Varying Number of Observations and Groups
	Pseudo Real Data
	Local Convergence Experiment
	Lasso Simulations

